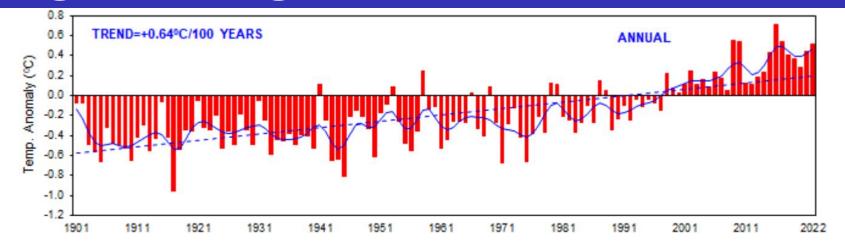
Scorching Heat and Shrinking Horizons: The Impact of Rising Temperatures on Marriages and Migration in Rural India

Discussant: Sisir Debnath

Indian Institute of Technology Delhi


2/20/2024

Interpreting the Marginal Effects

- Examines the long-run impacts of climate change or temperature levels on within-district migration by gender and residence (rural vs. urban)
- 1°C increase in mean decadal temperature is associated with
 - 5% decline in female rural-urban migration
 - 13% decline in female rural-rural migration
- These marginal effects may be discussed in the context of long-term changes in temperature

《曰》《卽》《臣》《臣》 [] 臣

Interpreting the Marginal Effects

Fig.1: Annual mean land surface air temperature anomalies averaged over India for the period 1901-2022. The anomalies were computed with respect to the base period of 1981-2010. The dotted line indicates the linear trend in the time series. The solid blue curve represents the sub-decadal time scale variation smoothed with a binomial filter.

- Source: Statement on Climate of India during 2022: IMD
- The annual mean land surface air temperature averaged over India during 2022 was +0.51°C above the long-term average (1981-2010 period).

Interpreting the Marginal Effects

Year	Mean	SD
Annual Temperature (°C)		
1981-1990	24.0	4.51
1991-2000	24.1	4.44
2001-2010	24.4	4.43

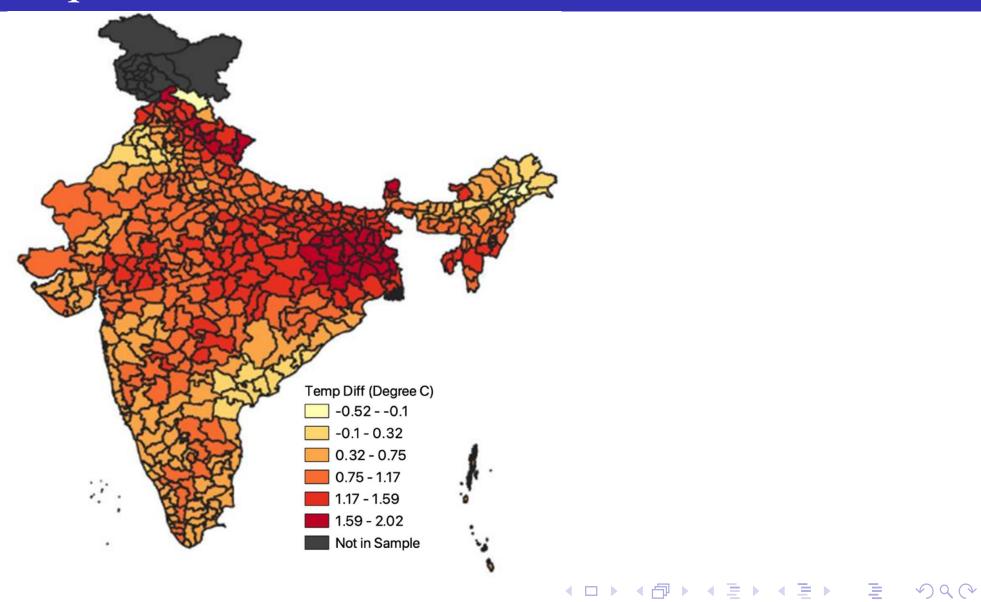
- Author's own calculations show that average annual temperature changed by +0.4°C over a period of 30 years
- Predicting marginal effects out of sample or for some districts experiencing large deviations?
- Are these effects linear in nature?

▲□▶ ▲圖▶ ▲필▶ ▲필▶ _ 필.

Are Marriage Markets Expanding?

- What fraction of migrating women travel outside their native district?
- Can expansion of marriage markets due to climate uncertainties explain the decline in intradistrict migration for females?
 - ``Farm households afflicted with more variable profits tend to engage in longer-distance marriage cum migration." Rosenzweig and Stark (1989)
- Extensive literature on the effect of climate change on agriculture
 - Guiteras, R. (2009); J. Hansen et. Al. (2004); Deschenes, O., and M. Greenstone (2007)
- This paper also estimated a marked decline in agricultural yields
- Inter-district marriage migration could be a confounding factor.

 $\mathcal{O} \mathcal{Q} \mathcal{O}$


North vs. South Heterogeneity

- To investigate the dowry mechanism, the paper estimates the heterogeneity in the effect of decadal temperature by northern and southern states
- Note that the variation in the temperature changes also varies by northern and southern states

《曰》《部》《臣》《臣》 [] 臣

 $Q (\sim$

Changes in Temperature: 1981-2010

North vs. South Heterogeneity

- To investigate the dowry mechanism, the paper estimates the heterogeneity in the effect of decadal temperature by northern and southern states
- Note that the variation in the temperature changes also varies by northern and southern states
- The large negative effect on female migration for the northern states can be explained by larger temperature changes

▲□▶ ▲□▶ ▲ 国▶ ▲ 国▶ ― 国

 $Q (\sim$

Selection Issues

Census year	Urban Population (in million)	Percent urban	Annual exponential urban growth rate (%)
1961	78.94	17.97	-
1971	109.11	19.91	3.23
1981	159.46	23.34	3.79
1991	217.18	25.72	3.09
2001	286.12	27.86	2.75
2011	377.1	31.16	2.76

- Source: Urbanization in India: Trends, Patterns, and Policy Issues: IIPS Working Paper
- Rapid urbanization between 1991-2011
- Urban peripheries defined as rural areas in 1991 Census are likely to be classified as urban areas in the later rounds.
- The nature of rural population (including their distance to an urban area) may have changed over time
- 2011 Census rural areas are relatively more remote on an average with different marriage migration patterns

▲□▶▲圖▶▲필▶▲필▶ _ 필.

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Spatial Correlations

- Estimation of standard errors involving climatic data are often biased as they ignore spatial correlations
- A typical solution is to account for spatial correlation using Conley (1999) which often corrects for the underestimation of the standard errors
- Most often, se's increase substantially after correcting for spatial correlation
- Surprisingly, at times Conley se's are smaller than the errors clustered at the district levels

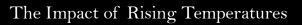
▲□▶ ▲圖▶ ▲필▶ ▲필▶ - 필

Q (

Spatial Correlations

Variable	Standard error	Distance cut-off	Temperature	Precipitation
Male rural-urban migration rate				
	Conley standard error	100	(0.0060)	(0.0015)
	Conley standard error	150	(0.0059)	(0.0014)
	Conley standard error	200	(0.0061)	(0.0013)
	Clustering District		(0.0025)	(0.0021)
Female rural-urban migration rate				
	Conley standard error	100	$(0.0030)^{**}$	(0.0031)
	Conley standard error	150	$(0.0035)^*$	(0.0031)
	Conley standard error	200	$(0.0038)^{*}$	(0.0041)
	Clustering District		$(0.0031)^{**}$	(0.0030)
Male rural-rural migration rate				
	Conley standard error	100	(0.0051)	$(0.0029)^{***}$
	Conley standard error	150	(0.0054)	$(0.0030)^{***}$
	Conley standard error	200	(0.0058)	$(0.0032)^{**}$
	Clustering District		(0.0060)	$(0.0033)^{**}$
Female rural-rural migration rate				
	Conley standard error	100	$(0.0111)^{***}$	$(0.0060)^*$
	Conley standard error	150	$(0.0120)^{***}$	(0.0066)
	Conley standard error	200	$(0.0125)^{**}$	(0.0069)
	Clustering District		$(0.0124)^{**}$	(0.0065)
Observations	0		1,341	1,341

The Impact of Rising Temperatures


2/20/2024

11

Empirical Specification

$$Y_{jt} = \beta_0 T_{jt} + \beta_1 P_{jt} + \phi_j + \phi_t + \epsilon_{jt}$$

• May consider including a time trend

<□ > < □ >

▲ 臣 ▶ ▲ 臣 ▶ … 臣.

 $\mathcal{O} \mathcal{Q} \mathcal{O}$