Segregation or Diversification of Employees

Ria Mongia

ISI, Delhi

Advisor: Prof. Prabal Roy Chowdhury

February 6, 2025

Motivation

- Group-based homophily preferences
 - Gender, caste, religion, nationality
- Context- dependent
 - No evidence of discrimination for software jobs but significant presence in the case of call-center jobs [*Banerjee et al. (2009)*]
- Firm characteristics and its Composition [*Chakraborty and Mahajan* (2025)]
 - Higher female proportion in larger firms
 - Size firm is positively correlated with TFP

IS PRODUCTIVITY IMPORTANT FOR COMPOSITION?

Roadmap

2 Model

- Setup: Employee recruitment
- Employees' discriminatory taste against another group
- Firm chooses its optimal workforce composition
- Explore tradeoff between *Segregation* (only single group) and *Diversification* (both groups)
- Tradeoff for diversification:
 - Cost: Increased wage bill to compensate disutility for another group *Homophily effect*
 - Benefit: Access skilled and willing workers from a broader pool *Outreach* effect
- Result: As the factor productivity of the firm increases, the firms have greater incentives to diversify their workforce.

- How does the profit-maximizing firm choose its workforce composition under homophily preferences?
- How do the composition structures evolve under productivity dynamics?

• Taste-based discrimination [Becker (1957), Arrow (1971)]

• Substitutability between groups [Welch (1967)]

Group productivity and diversification

- Increase in own-caste group members improves individual productivity [*Afridi et al.* (2024)]
- Better women representation linked to better performance [Jain (2022)]

Model

- Workers
 - Worker's type = {Gender, Skill, Preference}
 - Gender groups, $g=\{M,F\}$ each of a unit mass
 - Preference type $\theta_i \sim U[0, 1]$ *Unobservable*
 - Skill type $\rho_i = \{H, L\}$ where H > L *Observable*
 - *p* is the proportion of H type
 - Utility of worker $i \in (g, \rho_i, \theta_i)$ is $U_i = w_i + k\theta_i \eta_g$ where $\eta_g = \frac{n_g}{(n_M + n_F)}$
 - θ_i : Intensity of homophily and willingness to work
 - Outside option = c
- Firm
 - A profit maximising monopsony firm
 - Output generated $Y = \sum_i Y_i$; $Y_i(\rho_i) = \rho_i \cdot A$
 - No employers' discrimination

We consider a two-stage game:

- *Stage 1*: Wage rate *w_i* to each worker simultaneously **Firm Offers**
- *Stage 2:* Simultaneously decide whether to accept or reject the contract **Workers' Respond**

Note: Given the informational assumptions, individual wages can be conditioned on gender, and productivity, but not on their preference parameter.

- We solve this problem using the concept of Subgame Perfect Nash Equilibrium
- In equilibrium,
 - Given the firm's contract and other workers' decisions, the worker's optimally choose their joining decision
 - Firms choose the wage contract to maximize their profits given the workers' joining decision

$$\max_{w_i} \pi = \pi_{M,H} + \pi_{M,L} + \pi_{F,H} + \pi_{F,L}$$

subject to
$$U_i^{\text{accept}} \ge U_i^{\text{reject}}$$

$$\pi_{M,H} = p \cdot \int_{i} (\rho_{i} \cdot A - w_{i}) d\theta_{i} ; i \in (M,H)$$

$$\pi_{M,L} = (1-p) \cdot \int_{i} (\rho_{i} \cdot A - w_{i}) d\theta_{i} ; i \in (M,L)$$

$$\pi_{F,H} = p \cdot \int_{i} (\rho_{i} \cdot A - w_{i}) d\theta_{i} ; i \in (F,H)$$

$$\pi_{F,L} = (1-p) \cdot \int_{i} (\rho_{i} \cdot A - w_{i}) d\theta_{i} ; i \in (F,L)$$

Workers' Problem

Definition: For a worker with ρ_i skill and g gender, let, $\theta_{\rho_i}^g$ denote the preference type and $\bar{\theta}_{\rho_i}^g$ denote the preference type of threshold worker such that all workers with preference type $\theta_{\rho_i}^g \ge \bar{\theta}_{\rho_i}^g$ choose to accept the contract.

Lemma

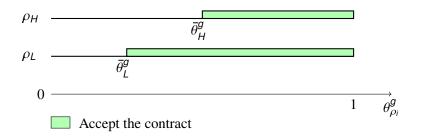
For each skill type ρ_i and gender g,

- There exists a well-defined $\bar{\theta}_{\rho_i}^{\bar{g}} \in [0, 1]$.
- In equilibrium, the worker with preference type $\bar{\theta}_{\rho_i}^g$ is indifferent between accepting and rejecting the contract i.e. $U(\bar{\theta}_{\rho_i}^g) = c$.

Intuition:

- For each $\{\rho_i, g\}$, if a given preference type accepts then all workers with a greater preference type also accept
- Monopsony power to offer minimum wages to the threshold worker

Workers' acceptance



$$w_{\rho_i}^g = \begin{cases} c - k \bar{\theta}_{\rho_i}^g \eta_g & \text{if } \bar{\theta}_{\rho_i}^g \in [0, 1) \\ c - k & \text{if } \bar{\theta}_{\rho_i}^g = 1 \end{cases}$$

As $\bar{\theta}_{\rho_i}^g$ increases, it has two opposing effects on $w_{\rho_i}^g$.

- Satisfy the utility requirement of lesser workers (*Willingness effect*) of ρ_i skill and g group (1- θ^g_{ρi}) ↓ so w^g_{ρi} ↓.
- Decreasing proportion of gender group (*Homophily effect*) $\eta_g \downarrow$ so $w_{\rho_i}^g \uparrow$.

The thresholds of other groups $\bar{\theta}_{\rho'_i}^{g'}$ affect their own wages $w_{\rho_i}^g$ through homophily effect only.

Lemma

The problem of maximizing firm profit with respect to the wage vector is isomorphic to maximizing firm profit with respect to the cutoff vector

$$\max_{\bar{\theta}_{\rho_i}^g} \pi = \pi_{M,H} + \pi_{M,L} + \pi_{F,H} + \pi_{F,L}$$

subject to $\[\bar{\theta}_{H}^{M}, \[\bar{\theta}_{L}^{M}, \[\bar{\theta}_{H}^{F}, \[\bar{\theta}_{L}^{F} \in [0, 1]\]\]$

$$\begin{aligned} \pi_{M,H} &= p(1 - \bar{\theta}_{H}^{M})(A \cdot \rho_{H} - c + k\bar{\theta}_{H}^{M}\eta_{M}) \\ \pi_{M,L} &= (1 - p)(1 - \bar{\theta}_{L}^{M})(A \cdot \rho_{L} - c + k\bar{\theta}_{L}^{M}\eta_{M}) \\ \pi_{F,H} &= p(1 - \bar{\theta}_{H}^{F})(A \cdot \rho_{H} - c + k\bar{\theta}_{H}^{F}\eta_{F}) \\ \pi_{F,L} &= (1 - p)(1 - \bar{\theta}_{L}^{F})(A \cdot \rho_{L} - c + k\bar{\theta}_{L}^{F}\eta_{F}) \end{aligned}$$

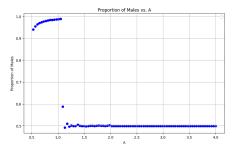


Figure: Numerical maximisation

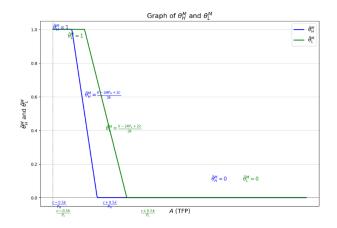
Standard uniform distribution, c = 3, p = 0.5, $\rho_H = 3$, $\rho_L = 2$, k = 2

Observation: $\eta_M = \{0, 1, \frac{1}{2}\}$

- Two solution classes: Segregation & Symmetric Diversification.
- Derived the solution within each class.
- Compare the firm's profits under two solution classes to determine the optimal workforce composition.

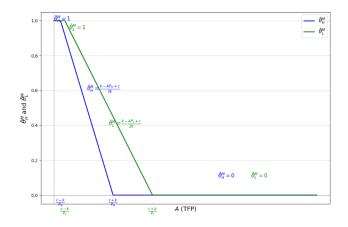
Symmetric diversification

Same thresholds across gender groups i.e. $\bar{\theta}_{H}^{M} = \bar{\theta}_{H}^{F}, \bar{\theta}_{L}^{M} = \bar{\theta}_{L}^{F}$.



Segregation (Male-dominant)

No females would be hired i.e. $\bar{\theta}_{H}^{F} = \bar{\theta}_{L}^{F} = 1$.



- The firm hires a greater number of high-skill than low-skill workers $(\bar{\theta}_{H}^{g} \leq \bar{\theta}_{L}^{g})$ by offering them a greater wage rate i.e. $w_{H}^{g} \geq w_{L}^{g}$.
- During low productivity levels, the homophily effect dominates so the firm segregates its workforce.
- Also, at high productivity levels, the outreach effect dominates so the profits from diversification exceed segregation.
- As the firm's productivity increases, at least one switching point must exist wherein the firm switches its strategy from segregation to diversification.

Result: Homogeneous Skill

Definition: Let, \hat{A}_{ρ_i} denotes the productivity threshold wherein the firm switches its strategy from segregation to diversification for ρ_i skill type *i.e.* firm segregates for $A < \hat{A}_{\rho_i}$ and diversifies for $A > \hat{A}_{\rho_i}$.

Proposition

Suppose that the workers are either all skilled or all unskilled, i.e. $p \in \{0, 1\}$, a unique threshold exists for each skill type, i.e. $\hat{A}_H = \frac{c}{\rho_H}$ if p = 1 and $\hat{A}_L = \frac{c}{\rho_L}$ if p = 0.

Intuition:

- Absence of the skill effect.
- Given the mass of each gender, the homophily effect is dominated by the willingness effect.

Result: Heterogeneous Skill

Proposition

Suppose skill levels are heterogenous, i.e. $p \in (0, 1)$ and \hat{A} denote the productivity threshold. Then, there exists a unique \hat{A} if (1) $\frac{\rho_H}{\rho_L} < \frac{c}{c-0.5k}$ (2) $\frac{c}{c-0.5k} < \frac{\rho_H}{\rho_L} < \frac{c}{c-k}$ and $p \ge \frac{\rho_L^2}{3\rho_H^2 + \rho_L^2} \equiv \hat{p}_1$ (3) $\frac{\rho_H}{\rho_L} > \frac{c}{c-k}$ and $p \ge \frac{(\frac{k+A\rho_L-c}{2})^2}{(\frac{k+A\rho_L-c}{2})^2 + (0.5k-c+A\rho_H)^2 - (\frac{k+A\rho_H-c}{2})^2} \equiv \hat{p}_2$. Otherwise, there exists one or two \hat{A} .

Intuition:

- Case 1: The effect of skill differential is weak
- Cases (2 & 3): The outreach effect remains dominant when there is a greater proportion of skilled workers $(p > \hat{p})$ amplifying the strength of skill benefits.
- **Summary:** A unique productivity threshold holds if either skill differential is minimal or there is a greater proportion of high-skill workers.

- Distribution of preferences (Normal, log-normal, beta)
- Non-symmetric gender groups
 - Unequal labor supply link
 - Unequal outside option link
 - One-sided homophily link

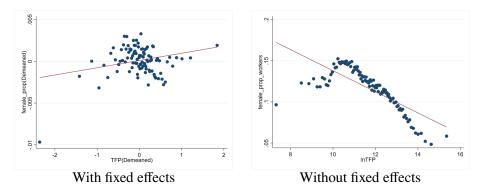
- Focus on efficiency motives(Productivity) automatically solves equality (Diversity) targets
- Affirmative actions may not be required in a productive economy

Productivity enhancement: A possible way to increase diversity

Empricial Corroboration

- Objective: Association between factor productivity and gender diversity
- Dataset: ASI Panel Data (2008-2020)
- Main Variables:
 - Gender diversity
 - Proportion of female workers(or man-days)
 - Based on workers in permanent employment
 - Total factor productivity(TFP)
 - Used Levinsohn & Petrin(2003) methodology
 - STATA command: *levpet*

Association



Fixed effects include Firm, State*time, Industry(4 digit NIC)*time, Time

Intensive margin: Proportion of female

Empirical Strategy

$$Female_prop_{ijst} = \beta_0 + \beta_1 InTFP_{ijst} + \delta_i + \delta_{jt} + \delta_{st} + \delta_t + \epsilon_{ijst}$$

We observe i_{th} firm in j_{th} industry, s state and at t time

	1	2	
VARIABLE	Female Proportion		
InTFP	.028813 ***	-3.01e-11	
	(0.002337)	(2.78e-11)	
Constant	0.0053111	0133144	
	(0.8859062)	(.1980283)	
Mean	.125	.125	
Observations	5,35,922	535,922	
Firm F.E.	Yes	No	
State*Time FE	Yes	Yes	
Industry*Time FE	Yes	Yes	
Time FE	Yes	Yes	

Extensive margin: Proportion of female

Empirical Strategy

$$Female_{ijst} = \beta_0 + \beta_1 InTFP_{ijst} + \delta_i + \delta_{jt} + \delta_{st} + \delta_t + \epsilon_{ijst}$$

 $female = \begin{cases} 1 & \text{if female proportion} > 0 \\ 0 & \text{otherwise} \end{cases}$

	1	2	3
VARIABLE		Female	
InTFP	0.0153***	-0.0816***	-0.145***
	(0.00564)	(0.00425)	(0.00364)
Constant	-0.234***	-1.167***	1.138***
	(0.0897)	(0.112)	(0.0416)
Mean of Female	0.5114474	0.5114474	0.5114474
Pseudo R2	0.0163	0.1533	0.0073
Observations	535,759	535,921	535,921
Firm F.E.	Yes	No	No
State*Time FE	Yes	Yes	No
Industry*Time FE	Yes	Yes	No
Time FE	Yes	Yes	No

Employment of female

Empirical Strategy

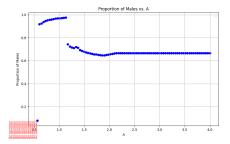
 $lnY_{ijst} = \beta_0 + \beta_1 lnTFP_{ijst} + \delta_i + \delta_{jt} + \delta_{st} + \delta_t + \epsilon_{ijst}$

Y={No. of female workers, No. of total workers}

	1	2
VARIABLES	In total workers	In female workers
InTFP	0.135***	0.0984***
	(0.00314)	(0.00675)
Constant	1.582***	1.180***
	(0.0359)	(0.0778)
All F.E.	Yes	Yes
Mean Y	67.11	0.125
Observations	460,289	133,362
R-squared	0.924	0.907

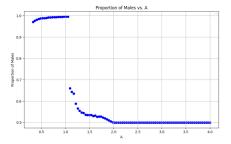
Thank You !! riamongia123@gmail.com

Unequal labor supply



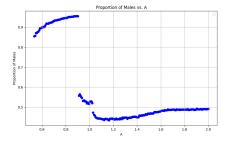
$$\eta_M = \{1, \frac{2}{3}\}$$

Unequal outside option



 $\eta_M = \{1, \frac{1}{2}\}$

One-sided homophily



 $\eta_M=\{1,\tfrac{1}{2}\}$

Future directions: Model Refinement

Rationalize the non-symmetric diversification

- Due to the presence of social norms, on an average women supply less labor as compared to men.
- Introduce an unequal mass of labor supply

Perform preference concavification

- $U_{ikj} = w_{kj} + \theta_i^k \cdot \sqrt{n_{kj}}$
- Explain why diversity motive costs more to smaller firms

Calculate the cost of diversity

- Quantify the wage compromise/premium for diversity motives
- Use hedonic wage literature and evaluate each job attribute

Impact of Affirmative action (AA)

- Welfare of all the groups(male, female) and the firm
- Trivially, the firm would be worse off
- Enhance the welfare of all workers and take out firms from inferior equilibriums